program tip

각 그룹 내에서 지연 변수를 만드는 방법은 무엇입니까?

radiobox 2020. 12. 14. 08:02
반응형

각 그룹 내에서 지연 변수를 만드는 방법은 무엇입니까?


data.table이 있습니다.

set.seed(1)
data <- data.table(time = c(1:3, 1:4),
                   groups = c(rep(c("b", "a"), c(3, 4))),
                   value = rnorm(7))

data
#    groups time      value
# 1:      b    1 -0.6264538
# 2:      b    2  0.1836433
# 3:      b    3 -0.8356286
# 4:      a    1  1.5952808
# 5:      a    2  0.3295078
# 6:      a    3 -0.8204684
# 7:      a    4  0.4874291

각 "그룹"수준 에서 "값"열의 지연된 버전을 계산하고 싶습니다 .

결과는 다음과 같아야합니다.

#   groups time      value  lag.value
# 1      a    1  1.5952808         NA
# 2      a    2  0.3295078  1.5952808
# 3      a    3 -0.8204684  0.3295078
# 4      a    4  0.4874291 -0.8204684
# 5      b    1 -0.6264538         NA
# 6      b    2  0.1836433 -0.6264538
# 7      b    3 -0.8356286  0.1836433

lag직접 사용하려고했습니다 .

data$lag.value <- lag(data$value) 

... 확실히 작동하지 않을 것입니다.

나는 또한 시도했다 :

unlist(tapply(data$value, data$groups, lag))
 a1         a2         a3         a4         b1         b2         b3 
 NA -0.1162932  0.4420753  2.1505440         NA  0.5894583 -0.2890288 

거의 내가 원하는 것입니다. 그러나 생성 된 벡터는 문제가되는 data.table의 순서와 다르게 정렬됩니다.

base R, plyr, dplyr 및 data.table에서이를 수행하는 가장 효율적인 방법은 무엇입니까?


당신은 내에서 이것을 할 수 있습니다 data.table

 library(data.table)
 data[, lag.value:=c(NA, value[-.N]), by=groups]
  data
 #   time groups       value   lag.value
 #1:    1      a  0.02779005          NA
 #2:    2      a  0.88029938  0.02779005
 #3:    3      a -1.69514201  0.88029938
 #4:    1      b -1.27560288          NA
 #5:    2      b -0.65976434 -1.27560288
 #6:    3      b -1.37804943 -0.65976434
 #7:    4      b  0.12041778 -1.37804943

여러 열의 경우 :

nm1 <- grep("^value", colnames(data), value=TRUE)
nm2 <- paste("lag", nm1, sep=".")
data[, (nm2):=lapply(.SD, function(x) c(NA, x[-.N])), by=groups, .SDcols=nm1]
 data
#    time groups      value     value1      value2  lag.value lag.value1
#1:    1      b -0.6264538  0.7383247  1.12493092         NA         NA
#2:    2      b  0.1836433  0.5757814 -0.04493361 -0.6264538  0.7383247
#3:    3      b -0.8356286 -0.3053884 -0.01619026  0.1836433  0.5757814
#4:    1      a  1.5952808  1.5117812  0.94383621         NA         NA
#5:    2      a  0.3295078  0.3898432  0.82122120  1.5952808  1.5117812
#6:    3      a -0.8204684 -0.6212406  0.59390132  0.3295078  0.3898432
#7:    4      a  0.4874291 -2.2146999  0.91897737 -0.8204684 -0.6212406
#    lag.value2
#1:          NA
#2:  1.12493092
#3: -0.04493361
#4:          NA
#5:  0.94383621
#6:  0.82122120
#7:  0.59390132

최신 정보

에서 data.table버전> = v1.9.5, 우리가 사용할 수 있습니다 shifttype같은 laglead. 기본적으로 유형은 lag입니다.

data[, (nm2) :=  shift(.SD), by=groups, .SDcols=nm1]
#   time groups      value     value1      value2  lag.value lag.value1
#1:    1      b -0.6264538  0.7383247  1.12493092         NA         NA
#2:    2      b  0.1836433  0.5757814 -0.04493361 -0.6264538  0.7383247
#3:    3      b -0.8356286 -0.3053884 -0.01619026  0.1836433  0.5757814
#4:    1      a  1.5952808  1.5117812  0.94383621         NA         NA
#5:    2      a  0.3295078  0.3898432  0.82122120  1.5952808  1.5117812
#6:    3      a -0.8204684 -0.6212406  0.59390132  0.3295078  0.3898432
#7:    4      a  0.4874291 -2.2146999  0.91897737 -0.8204684 -0.6212406
#    lag.value2
#1:          NA
#2:  1.12493092
#3: -0.04493361
#4:          NA
#5:  0.94383621
#6:  0.82122120
#7:  0.59390132

역방향이 필요한 경우 type=lead

nm3 <- paste("lead", nm1, sep=".")

원래 데이터 세트 사용

  data[, (nm3) := shift(.SD, type='lead'), by = groups, .SDcols=nm1]
  #  time groups      value     value1      value2 lead.value lead.value1
  #1:    1      b -0.6264538  0.7383247  1.12493092  0.1836433   0.5757814
  #2:    2      b  0.1836433  0.5757814 -0.04493361 -0.8356286  -0.3053884
  #3:    3      b -0.8356286 -0.3053884 -0.01619026         NA          NA
  #4:    1      a  1.5952808  1.5117812  0.94383621  0.3295078   0.3898432
  #5:    2      a  0.3295078  0.3898432  0.82122120 -0.8204684  -0.6212406
  #6:    3      a -0.8204684 -0.6212406  0.59390132  0.4874291  -2.2146999
  #7:    4      a  0.4874291 -2.2146999  0.91897737         NA          NA
 #   lead.value2
 #1: -0.04493361
 #2: -0.01619026
 #3:          NA
 #4:  0.82122120
 #5:  0.59390132
 #6:  0.91897737
 #7:          NA

데이터

 set.seed(1)
 data <- data.table(time =c(1:3,1:4),groups = c(rep(c("b","a"),c(3,4))),
             value = rnorm(7), value1=rnorm(7), value2=rnorm(7))

패키지 사용 dplyr:

library(dplyr)
data <- 
    data %>%
    group_by(groups) %>%
    mutate(lag.value = dplyr::lag(value, n = 1, default = NA))

준다

> data
Source: local data table [7 x 4]
Groups: groups

  time groups       value   lag.value
1    1      a  0.07614866          NA
2    2      a -0.02784712  0.07614866
3    3      a  1.88612245 -0.02784712
4    1      b  0.26526825          NA
5    2      b  1.23820506  0.26526825
6    3      b  0.09276648  1.23820506
7    4      b -0.09253594  0.09276648

@BrianD에서 언급했듯이 이것은 값이 이미 그룹별로 정렬되어 있다고 암시 적으로 가정합니다. 그렇지 않은 경우 그룹별로 정렬하거나에서 order_by인수를 사용하십시오 lag. 또한 일부 dplyr 버전의 기존 문제 로 인해 안전을 위해 인수 및 네임 스페이스를 명시 적으로 제공해야합니다.


기본 R에서는 다음 작업을 수행합니다.

data$lag.value <- c(NA, data$value[-nrow(data)])
data$lag.value[which(!duplicated(data$groups))] <- NA

첫 번째 줄은 지연된 (+1) 관측 값 문자열을 추가합니다. 두 번째 문자열은 지연된 관측 값이 이전 그룹의 것이기 때문에 각 그룹의 첫 번째 항목을 수정합니다.

data형식이다 data.frame사용하지 않도록 data.table.


데이터 주문 문제를 피하려면 dplyr을 사용하여 다음과 같이 수동으로 수행 할 수 있습니다.

df <- data.frame(Names = c(rep('Dan',50),rep('Dave',100)),
            Dates = c(seq(1,100,by=2),seq(1,100,by=1)),
            Values = rnorm(150,0,1))

df <- df %>% group_by(Names) %>% mutate(Rank=rank(Dates),
                                    RankDown=Rank-1)

df <- df %>% left_join(select(df,Rank,ValueDown=Values,Names),by=c('RankDown'='Rank','Names')
) %>% select(-Rank,-RankDown)

head(df)

또는 선택한 그룹화 변수, 순위 열 (날짜 등) 및 선택한 지연 수를 사용하여 함수에 넣는 아이디어를 좋아합니다. 이것은 또한 dplyr뿐만 아니라 lazyeval도 필요합니다.

groupLag <- function(mydf,grouping,ranking,lag){
  df <- mydf
  groupL <- lapply(grouping,as.symbol)

  names <- c('Rank','RankDown')
  foos <- list(interp(~rank(var),var=as.name(ranking)),~Rank-lag)

  df <- df %>% group_by_(.dots=groupL) %>% mutate_(.dots=setNames(foos,names))

  selectedNames <- c('Rank','Values',grouping)
  df2 <- df %>% select_(.dots=selectedNames)
  colnames(df2) <- c('Rank','ValueDown',grouping)

  df <- df %>% left_join(df2,by=c('RankDown'='Rank',grouping)) %>% select(-Rank,-RankDown)

  return(df)
}

groupLag(df,c('Names'),c('Dates'),1)

각 그룹에 모든 기간에 대한 데이터가 있다는 보장이없는 중요한 경우에이 문제에 접근하는 두 가지 방법을 언급하여 이전 답변을 보완하고 싶었습니다 . 즉, 여전히 규칙적인 간격의 시계열이 있지만 여기저기서 누락이있을 수 있습니다. dplyr솔루션 을 개선하는 두 가지 방법에 초점을 맞출 것 입니다.

우리는 당신이 사용한 것과 동일한 데이터로 시작합니다.

library(dplyr)
library(tidyr)

set.seed(1)
data_df = data.frame(time   = c(1:3, 1:4),
                     groups = c(rep(c("b", "a"), c(3, 4))),
                     value  = rnorm(7))
data_df
#>   time groups      value
#> 1    1      b -0.6264538
#> 2    2      b  0.1836433
#> 3    3      b -0.8356286
#> 4    1      a  1.5952808
#> 5    2      a  0.3295078
#> 6    3      a -0.8204684
#> 7    4      a  0.4874291

...하지만 이제 우리는 두 개의 행을 삭제합니다

data_df = data_df[-c(2, 6), ]
data_df
#>   time groups      value
#> 1    1      b -0.6264538
#> 3    3      b -0.8356286
#> 4    1      a  1.5952808
#> 5    2      a  0.3295078
#> 7    4      a  0.4874291

단순한 dplyr솔루션이 더 이상 작동하지 않습니다.

data_df %>% 
  arrange(groups, time) %>% 
  group_by(groups) %>% 
  mutate(lag.value = lag(value)) %>% 
  ungroup()
#> # A tibble: 5 x 4
#>    time groups  value lag.value
#>   <int> <fct>   <dbl>     <dbl>
#> 1     1 a       1.60     NA    
#> 2     2 a       0.330     1.60 
#> 3     4 a       0.487     0.330
#> 4     1 b      -0.626    NA    
#> 5     3 b      -0.836    -0.626

You see that, although we don't have the value for the case (group = 'a', time = '3'), the above still shows a value for the lag in the case of (group = 'a', time = '4'), which is actually the value at time = 2.

Correct dplyr solution

The idea is that we add the missing (group, time) combinations. This is VERY memory-inefficient when you have lots of possible (groups, time) combinations, but the values are sparsely captured.

dplyr_correct_df = expand.grid(
  groups = sort(unique(data_df$groups)),
  time   = seq(from = min(data_df$time), to = max(data_df$time))
) %>% 
  left_join(data_df, by = c("groups", "time")) %>% 
  arrange(groups, time) %>% 
  group_by(groups) %>% 
  mutate(lag.value = lag(value)) %>% 
  ungroup()
dplyr_correct_df
#> # A tibble: 8 x 4
#>   groups  time   value lag.value
#>   <fct>  <int>   <dbl>     <dbl>
#> 1 a          1   1.60     NA    
#> 2 a          2   0.330     1.60 
#> 3 a          3  NA         0.330
#> 4 a          4   0.487    NA    
#> 5 b          1  -0.626    NA    
#> 6 b          2  NA        -0.626
#> 7 b          3  -0.836    NA    
#> 8 b          4  NA        -0.836

Notice that we now have a NA at (group = 'a', time = '4'), which should be the expected behaviour. Same with (group = 'b', time = '3').

Tedious but also correct solution using the class zoo::zooreg

This solution should work better in terms of memory when the amount of cases is very large, because instead of filling the missing cases with NA's, it uses indices.

library(zoo)

zooreg_correct_df = data_df %>% 
  as_tibble() %>% 
  # nest the data for each group
  # should work for multiple groups variables
  nest(-groups, .key = "zoo_ob") %>%
  mutate(zoo_ob = lapply(zoo_ob, function(d) {

    # create zooreg objects from the individual data.frames created by nest
    z = zoo::zooreg(
      data      = select(d,-time),
      order.by  = d$time,
      frequency = 1
    ) %>% 
      # calculate lags
      # we also ask for the 0'th order lag so that we keep the original value
      zoo:::lag.zooreg(k = (-1):0) # note the sign convention is different

    # recover df's from zooreg objects
    cbind(
      time = as.integer(zoo::index(z)),
      zoo:::as.data.frame.zoo(z)
    )

  })) %>% 
  unnest() %>% 
  # format values
  select(groups, time, value = value.lag0, lag.value = `value.lag-1`) %>% 
  arrange(groups, time) %>% 
  # eliminate additional periods created by lag
  filter(time <= max(data_df$time))
zooreg_correct_df
#> # A tibble: 8 x 4
#>   groups  time   value lag.value
#>   <fct>  <int>   <dbl>     <dbl>
#> 1 a          1   1.60     NA    
#> 2 a          2   0.330     1.60 
#> 3 a          3  NA         0.330
#> 4 a          4   0.487    NA    
#> 5 b          1  -0.626    NA    
#> 6 b          2  NA        -0.626
#> 7 b          3  -0.836    NA    
#> 8 b          4  NA        -0.836

Finally, lets check that both correct solutions are actually equal:

all.equal(dplyr_correct_df, zooreg_correct_df)
#> [1] TRUE

참고URL : https://stackoverflow.com/questions/26291988/how-to-create-a-lag-variable-within-each-group

반응형